domingo, 3 de marzo de 2013

FISICA TERMODINAMICA


Termodinámica
Campo de la fisica que describe y relaciona las propiedades físicas de sistemas macroscópicos de materia y energía. Los principios de la termodinámica tienen una importancia fundamental para todas las ramas de la ciencia y la ingenieria.
Un concepto esencial de la termodinámica es el de sistema macroscópico, que se define como un conjunto de materia que se puede aislar espacialmente y que coexiste con un entorno infinito e imperturbable. El estado de un sistema macroscópico en equilibrio puede describirse mediante propiedades medibles como la temperatura, la presión o el volumen, que se conocen como variables termodinámicas. Es posible identificar y relacionar entre sí muchas otras variables (como la densidad, el calor específico, la compresibilidad o el coeficiente de expansión térmica), con lo que se obtiene una descripción más completa de un sistema y de su relación con el entorno.
Principio cero de la termodinámica

Frecuentalmente, el vocabulario de las ciencias empíricas se toma prestado del lenguaje de la vida diaria. Así, aunque el término de temperatura parece evidente para el sentido común, su significado adolece de la imprecisión del lenguaje no matemático. El llamado principio cero de la termodinámica que se explica a continuación proporciona una definición precisa, aunque empírica, de la temperatura.
Cuando dos sistemas están en equilibrio mutuo, comparten una determinada propiedad. Esta propiedad puede medirse, y se le puede asignar un valor numérico definido. Una consecuencia de ese hecho es el principio cero de la termodinámica, que afirma que si dos sistemas distintos están en equilibrio termodinámico con un tercero, también tienen que estar en equilibrio entre sí. Esta propiedad compartida en el equilibrio es la temperatura.
Si uno de estos sistemas se pone en contacto con un entorno infinito situado a una determinada temperatura, el sistema acabará alcanzando el equilibrio termodinámico con su entorno, es decir, llegará a tener la misma temperatura que éste. (El llamado entorno infinito es una abstracción matemática denominada depósito térmico; en realidad basta con que el entorno sea grande en relación con el sistema estudiado).
La temperatura se mide con dispositivos llamados termómetros. Un termómetro contiene una sustancia con estados fácilmente identificables y reproducibles, por ejemplo el agua pura y sus puntos de ebullición y congelación normales. Si se traza una escala graduada entre dos de estos estados, la temperatura de cualquier sistema puede determinarse poniéndolo en contacto térmico con el termómetro, siempre que el sistema sea grande en relación con el termómetro.
Primer principio de la termodinámica

La primera ley de la termodinámica da una definición precisa del calor, otro concepto de uso corriente.
Cuando un sistema se pone en contacto con otro más frío que él, tiene lugar un proceso de igualación de las temperaturas de ambos. Para explicar este fenómeno, los científicos del siglo XVIII conjeturaron que una sustancia que estaba presente en mayor cantidad en el cuerpo de mayor temperatura fluía hacia el cuerpo de menor temperatura. Según se creía, esta sustancia hipotética llamada calórico era un fluido capaz de atravesar los medios materiales. Por el contrario, el primer principio de la termodinámica identifica el calórico, o calor, como una forma de energía. Puede convertirse en trabajo mecánico y almacenarse, pero no es una sustancia material.Experimentalmente se demostró que el calor, que originalmente se medía en unidades llamadas calorías, y el trabajo o energía, medidos en julios, eran completamente equivalentes. Una caloría equivale a 4,186 julios.
El primer principio es una ley de conservación de la energía. Afirma que, como la energía no puede crearse ni destruirse dejando a un lado las posteriores ramificaciones de la equivalente entre masa y energía la cantidad de energía transferida a un sistema en forma de calor más la cantidad de energía transferida en forma de trabajo sobre el sistema debe ser igual al aumento de la energía interna del sistema. El calor y el trabajo son mecanismos por los que los sistemas intercambian energía entre sí.
En cualquier máquina, hace falta cierta cantidad de energía para producir trabajo; es imposible que una máquina realice trabajo sin necesidad de energía. Una máquina hipotética de estas características se denomina móvil perpetuo de primera especie. La ley de conservación de la energía descarta que se pueda inventar nunca una máquina así. A veces, el primer principio se enuncia como la imposobilidad de la existencia de un móvil perpetuo de primera especie.
Segundo principio de la termodinámica

La segunda ley de la termodinámica da una definición precisa de una propiedad llamada entropía. La entropía puede considerarse como una medida de lo próximo o no que se halla un sistema al equilibrio; también puede considerarse como una medida del desorden (espacial y térmico) del sistema. La segunda ley afirma que la entropía, o sea, el desorden, de un sistema aislado nunca puede decrecer. Por tanto, cuando un sistema aislado alcanza una configuración de máxima entropía, ya no puede experimentar cambios: ha alcanzado el equilibrio. La naturaleza parece pues ‘preferir’ el desorden y el caos. Puede demostrarse que el segundo principio implica que, si no se realiza trabajo, es imposible transferir calor desde una región de temperatura más baja a una región de temperatura más alta.
El segundo principio impone una condición adicional a los procesos termodinámicos. No basta con que se conserve la energía y cumplan así el primer principio. Una máquina que realizara trabajo violando el segundo principio se denomina “móvil perpetuo de segunda especie”, ya que podría obtener energía continuamente de un entorno frío para realizar trabajo en un entorno caliente sin coste alguno. A veces, el segundo principio se formula como una afirmación que descarta la existencia de un móvil perpetuo de segunda especie.
Ciclos termodinámicos

Todas las relaciones termodinámicas importantes empleadas en ingeniería se derivan del primer y segundo principios de la termodinámica. Resulta útil tratar los procesos termodinámicos basándose en ciclos: procesos que devuelven un sistema a su estado original después de una serie de fases, de manera que todas las variables termodinámicas relevantes vuelven a tomar sus valores originales. En un ciclo completo, la energía interna de un sistema no puede cambiar, puesto que sólo depende de dichas variables. Por tanto, el calor total neto transferido al sistema debe ser igual al trabajo total neto realizado por el sistema.
Un motor térmico de eficiencia perfecta realizaría un ciclo ideal en el que todo el calor se convertiría en trabajo mecánico. El científico francés del siglo XIX Sadi Carnot, que concibió un ciclo termodinámico que constituye el ciclo básico de todos los motores térmicos, demostró que no puede existir ese motor perfecto. Cualquier motor térmico pierde parte del calor suministrado. El segundo principio de la termodinámica impone un límite superior a laeficiencia de un motor, límite que siempre es menor del 100%. La eficiencia límite se alcanza en lo que se conoce como ciclo de Carnot.
RESUMEN